BTM and GloVe Similarity Linear Fusion-Based Short Text Clustering Algorithm for Microblog Hot Topic Discovery
نویسندگان
چکیده
منابع مشابه
Text clustering for topic detection
The world wide web represents vast stores of information. However, the sheer amount of such information makes it practically impossible for any human user to be aware of much of it. Therefore, it would be very helpful to have a system that automatically discovers relevant, yet previously unknown information, and reports it to users in human-readable form. As the first attempt to accomplish such...
متن کاملCorpus-Based methods for Short Text Similarity
This paper presents corpus-based methods to find similarity between short text (sentences, paragraphs, ...) which has many applications in the field of NLP. Previous works on this problem have been based on supervised methods or have used external resources such as WordNet, British National Corpus etc. Our methods are focused on unsupervised corpus-based methods. We present a new method, based ...
متن کاملSimilarity-Based Text Clustering: A Comparative Study
Clustering of text documents enables unsupervised categorization and facilitates browsing and search. Any clustering method has to embed the objects to be clustered in a suitable representational space that provides a measure of (dis)similarity between any pair of objects. While several clustering methods and the associated similarity measures have been proposed in the past for text clustering,...
متن کاملKnowledge discovery through text-based similarity searches for astronomy literature
The increase in the number of researchers coupled with the ease of publishing and distribution of scientific papers (due to technological advancements) has resulted in a dramatic increase in astronomy literature. This has likely led to the predicament that the body of the literature is too large for traditional human consumption and that related and crucial knowledge is not discovered by resear...
متن کاملTopic Discovery Algorithm Based on Mutual Information and Label Clustering under Dynamic Social Networks
In recent years, topic detection has become a hot research point of the social network, which can be very good to find the key factors from the massive information and thus discover the topics. The traditional label propagation-based topic discovery algorithm (LPA) is widely concerned because of its approximate linear time complexity and there is no need to define the target function. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2973430